Category Archives: Combinatorics

An arithmetic van der Corput trick and the polynomial van der Waerden theorem

The van der Corput difference theorem (or trick) was develop (unsurprisingly) by van der Corput, and deals with uniform distribution of sequences in the torus. Theorem 1 (van der Corput trick) Let be a sequence in a torus . If … Continue reading

Posted in Combinatorics, Ramsey Theory, Tool | Tagged , , , , , , , , , | Leave a comment

Piecewise syndetic sets, topological dynamics and ultrafilters

In this post I explore the notion of piecewise syndeticity and its relation to topological dynamical systems and the Stone-Čech compactification. I restrict attention to the additive semigroup but most results presented are true in much bigger generality (and I … Continue reading

Posted in Classic results, Combinatorics, Tool, Topological Dynamics | Tagged , , | 1 Comment

Measure preserving actions of affine semigroups and {x+y,xy} patterns

Vitaly Bergelson and I have recently submitted to the arXiv our paper entitled `Measure preserving actions of affine semigroups and patterns’. The main purpose of this paper is to extend the results of our previous paper, establishing some partial progress … Continue reading

Posted in Combinatorics, paper, Ramsey Theory | Tagged , , , , , , , | Leave a comment

Large subsets of discrete hypersurfaces in Z^d contain arbitrarily many collinear points

— 1. Introduction — Recently, Florian Richter and I uploaded to the arXiv our paper titled `Large subsets of discrete hypersurfaces in contain arbitrarily many collinear points’. This was the outcome of a fun project which started when we learned … Continue reading

Posted in Analysis, Combinatorics, paper | Tagged , , , , , | 2 Comments

New polynomial and multidimensional extensions of classical partition results

Vitaly Bergelson, John Johnson and I recently uploaded to the arXiv a paper entitled “New polynomial and multidimensional extensions of classical partition results“. In this post I will give some motivating examples for the results in the paper. To keep … Continue reading

Posted in Combinatorics, paper, Ramsey Theory | Tagged , , , , , | 1 Comment

Weighted densities with multiplicative structure

The upper density of a set , defined by provides a useful way to measure subsets of . For instance, whenever , contains arbitrarily long arithmetic progressions, this is Szemerédi’s theorem. A fundamental property of the upper density is that … Continue reading

Posted in Combinatorics, Number Theory, Tool | Tagged , , , | Leave a comment

A proof of Deuber’s theorem using Hales-Jewett’s theorem

In my previous post I explained how Rado’s theorem follows from Deuber’s theorem (which in turn gives a little more than Rado’s theorem, in one direction). The main purpose of this post is to give a full proof of Deuber’s … Continue reading

Posted in Combinatorics, Ramsey Theory | Tagged , , | 1 Comment