# Tag Archives: Bergelson

## Optimal intersectivity

In ergodic Ramsey theory, one often wants to prove that certain dynamically defined sets in a probability space intersect (or “recur”) in non-trivial ways. Typically, this is achieved by studying the long term behavior of the sets as the dynamics … Continue reading

Posted in Combinatorics, Probability, Ramsey Theory, Tool | Tagged , , , , | Leave a comment

## Single and multiple recurrence along non-polynomial sequences

Vitaly Bergelson, Florian Richter and I have recently uploaded to the arXiv our new paper “Single and multiple recurrence along non-polynomial sequences”. In this paper we address the question of what combinatorial structure is present in the set of return … Continue reading

Posted in Ergodic Theory, paper | | 1 Comment

## An arithmetic van der Corput trick and the polynomial van der Waerden theorem

The van der Corput difference theorem (or trick) was develop (unsurprisingly) by van der Corput, and deals with uniform distribution of sequences in the torus. Theorem 1 (van der Corput trick) Let be a sequence in a torus . If … Continue reading

## Measure preserving actions of affine semigroups and {x+y,xy} patterns

Vitaly Bergelson and I have recently submitted to the arXiv our paper entitled `Measure preserving actions of affine semigroups and patterns’. The main purpose of this paper is to extend the results of our previous paper, establishing some partial progress … Continue reading

## New polynomial and multidimensional extensions of classical partition results

Vitaly Bergelson, John Johnson and I recently uploaded to the arXiv a paper entitled “New polynomial and multidimensional extensions of classical partition results“. In this post I will give some motivating examples for the results in the paper. To keep … Continue reading

Posted in Combinatorics, paper, Ramsey Theory | | 2 Comments

## Convergence and Recurrence of Z actions

Ergodic Ramsey Theory started with Furstenberg’s proof of Szemeredi’s theorem in arithmetic progressions in 1977. Through a correspondence principle, Furstenberg realized that Szemeredi’s theorem follows from a dynamical statement: for every invertible, ergodic measure preserving transformation of a probability space … Continue reading