Tag Archives: geometric progressions
Double van der Waerden
— 1. Introduction — In a previous post I presented a proof of van der Waerden’s theorem on arithmetic progressions: Theorem 1 (van der Waerden, 1927) Consider a partition of the set of the natural numbers into finitely many pieces … Continue reading
Posted in Combinatorics, Ramsey Theory
Tagged arithmetic progressions, geometric progressions, Ultrafilters, van der waerden
4 Comments