Tag Archives: Jin

Erdős Sumset conjecture

Hindman’s finite sums theorem is one of the most famous and useful theorems in Ramsey theory. It states that for any finite partition of the natural numbers, one of the cells of this partition contains an IP-set, i.e., there exists … Continue reading

Posted in Combinatorics, Number Theory, State of the art | Tagged , , , , , , , | 4 Comments

Jin’s Theorem

— 1. Introduction — The Poincaré recurrence theorem (or, more accurately, its proof) implies that, given a set with positive upper Banach density, i.e. then there exists some such that . In fact one gets that the set of those … Continue reading

Posted in Combinatorics, Ergodic Theory, Ramsey Theory | Tagged , , , , , , | 4 Comments