Tag Archives: Poincare

Optimal intersectivity

In ergodic Ramsey theory, one often wants to prove that certain dynamically defined sets in a probability space intersect (or “recur”) in non-trivial ways. Typically, this is achieved by studying the long term behavior of the sets as the dynamics … Continue reading

Posted in Combinatorics, Probability, Ramsey Theory, Tool | Tagged , , , , | Leave a comment

Convergence and Recurrence of Z actions

Ergodic Ramsey Theory started with Furstenberg’s proof of Szemeredi’s theorem in arithmetic progressions in 1977. Through a correspondence principle, Furstenberg realized that Szemeredi’s theorem follows from a dynamical statement: for every invertible, ergodic measure preserving transformation of a probability space … Continue reading

Posted in Ergodic Theory, State of the art | Tagged , , , , , , , , , , , , , , | Leave a comment