Tag Archives: Stone-Cech compactification

Measure preserving actions of affine semigroups and {x+y,xy} patterns

Vitaly Bergelson and I have recently submitted to the arXiv our paper entitled `Measure preserving actions of affine semigroups and patterns’. The main purpose of this paper is to extend the results of our previous paper, establishing some partial progress … Continue reading

Posted in Combinatorics, paper, Ramsey Theory | Tagged , , , , , , , | Leave a comment

Jin’s Theorem

— 1. Introduction — The Poincaré recurrence theorem (or, more accurately, its proof) implies that, given a set with positive upper Banach density, i.e. then there exists some such that . In fact one gets that the set of those … Continue reading

Posted in Combinatorics, Ergodic Theory, Ramsey Theory | Tagged , , , , , , | 2 Comments

Properties of ultrafilters and a Theorem on arithmetic combinatorics

A Theorem of Schur (one of the earliest results in Ramsey Theory) asserts that given any finite coloring of the set of natural numbers , there exist of the same color such that also has the same color. As a … Continue reading

Posted in Combinatorics, Ramsey Theory | Tagged , , , , | 11 Comments